Home » Uncategorized » Inequality 31(Generalization, Vo Quoc Ba Can)

Inequality 31(Generalization, Vo Quoc Ba Can)

Problem:

Let \displaystyle a,b,c,d be positive real numbers. Prove that for \displaystyle k\in \left[\frac{1}{2},2\right], the following inequality holds:

\displaystyle \left(\frac{a+kb}{a+b+c}\right)^2+\left(\frac{b+kc}{b+c+d}\right)^2+\left(\frac{c+kd}{c+d+a}\right)^2+\left(\frac{d+ka}{d+a+b}\right)^2\geq \frac{4}{9}(k+1)^2.

Solution:

Wrong soluion :(. Can, i wait for your solution on that problem 😀

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s