Home » Uncategorized » Inequality 19(Vasile Cirtoaje)

Inequality 19(Vasile Cirtoaje)

Problem:

If \displaystyle a,b,c are real numbers prove that \displaystyle (a^2+b^2+c^2)^2\geq 3(a^3b+b^3c+c^3a).

Solution:

We are going to use the following well-known inequality:

\displaystyle (x+y+z)^2\geq 3(xy+yz+zx).

So, if we transform the \displaystyle x,y,z to \displaystyle a^2+bc-ab,b^2+ca-bc,c^2+ab-ca respectively we have that

\displaystyle \left(a^2+b^2+c^2\right)^{2}\geq 3\sum_{cyc}(a^2+bc-ab)(b^2+ca-bc)=3\sum_{cyc}a^3b=3(a^3b+b^3c+c^3a), Q.E.D.

Leave a comment