Home » Uncategorized » Inequality 11(2009 Mediterranean Mathematical Olympiad)

Inequality 11(2009 Mediterranean Mathematical Olympiad)


If \displaystyle x,y,z are positive real numbers prove that

\displaystyle \frac{xy}{xy+x^2+y^2}+\frac{yz}{yz+y^2+z^2}+\frac{zx}{zx+z^2+x^2}\leq \frac{x}{2x+z}+\frac{y}{2y+x}+\frac{z}{2z+y}.

Solution (An idea by Vo Quoc Ba Can):

Using the Cauchy-Schwarz Inequality we have that

\displaystyle \frac{x}{2x+z}+\frac{y}{2y+x}+\frac{z}{2z+y}=\frac{x^2}{2x^2+xz}+\frac{y^2}{2y^2+yx}+\frac{z^2}{2z^2+zy}\geq \frac{(x+y+z)^2}{2(x^2+y^2+z^2)+xy+yz+zx}.

Thus it suffices to show that

\displaystyle \sum_{cyc}\frac{xy}{x^2+xy+y^2}\leq \frac{(x+y+z)^2}{2(x^2+y^2+z^2)+xy+yz+zx},

which is equivalent to

\displaystyle \sum_{cyc}\left(\frac{1}{3}-\frac{xy}{x^2+xy+y^2}\right)\geq 1-\frac{(x+y+z)^2}{2(x^2+y^2+z^2)+xy+yz+zx},


\displaystyle \sum_{cyc}\frac{(x-y)^2}{3(x^2+xy+y^2)}\geq \frac{x^2+y^2+z^2-xy-yz-zx}{2(x^2+y^2+z^2)+xy+yz+zx}.

Since \displaystyle x^2+y^2+z^2-xy-yz-zx=\frac{(x-y)^2+(y-z)^2+(z-x)^2}{2} the above inequality can be rewritten as

\displaystyle \sum_{cyc}(x-y)^2\left[\frac{1}{3(x^2+xy+y^2)}-\frac{1}{2(x^2+y^2+z^2)+xy+yz+zx}\right]\geq 0,

which is obviously true, Q.E.D.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s